New Proofs and Extensions of Sylvester’s and Johnson’s Inertia Theorems to Non-hermitian Matrices
نویسنده
چکیده
We present a new proof and extension of the classical Sylvester Inertia Theorem to a pair of non-Hermitian matrices which satisfies the property that any real linear combination of the pair has only real eigenvalues. In the proof, we embed the given problem in a one-parameter family of related problems and examine the eigencurves of the family. The proof requires only elementary matrix theory and the Intermediate Value Theorem. The same technique is then used to extend Johnson’s extension of Sylvester’s Theorem on possible values of the inertia of a product of two matrices.
منابع مشابه
Structured Invariant Spaces of Vector Valued Rational Functions, Hermitian Matrices, and a Generalization of the lohvidov Laws
Finite dimensional indefinite inner product spaces of vector valued rational functions which are (1) invariant under the generalized backward shift and (2) subject to a structural identity, and subspaces and “superspaces” thereof are studied. The theory of these spaces is then applied to deduce a generalization of a pair of rules due to Iohvidov for evaluating the inertia of certain subblocks o...
متن کاملOn the non-split extension group $2^{6}{^{cdot}}Sp(6,2)$
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...
متن کاملHua’s Matrix Equality and Schur Complements
The purpose of this paper is to revisit Hua’s matrix equality (and inequality) through the Schur complement. We present Hua’s original proof and two new proofs with some extensions of Hua’s matrix equality and inequalities. The new proofs use a result concerning Schur complements and a generalization of Sylvester’s law of inertia, each of which is useful in its own right.
متن کاملOn the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly
The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...
متن کاملOn the non-split extension $2^{2n}{^{cdot}}Sp(2n,2)$
In this paper we give some general results on the non-splitextension group $overline{G}_{n} = 2^{2n}{^{cdot}}Sp(2n,2), ngeq2.$ We then focus on the group $overline{G}_{4} =2^{8}{^{cdot}}Sp(8,2).$ We construct $overline{G}_{4}$ as apermutation group acting on 512 points. The conjugacy classes aredetermined using the coset analysis technique. Then we determine theinertia factor groups and Fischer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011